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We have proposed a cluster mean field theory of the spin glasses in which dynamical clusters of spins are
the fundamental entity. We review experimental evidence for spin clusters and show that within our model
it is possible to understand (i) why the specific heat and resistivity have a broad maximum at temperatures
above Tsg at which the magnetic susceptibility cusp appears and (ii) why the total neutron cross section
do/d€), has a k-dependent maximum at temperatures below Tsg, where k is the momentum transfer to the
neutron. These results suggest that there may, in fact, be a sharp transition to the spin glass phase,

which turns out to be more apparent in susceptibility than in specific heat, resistivity, and neutron

measurements,

PACS numbers: 64.60.Cn, 75.10.Hk, 75.30.Cr, 75.40. —s

The purpose of this paper is to offer a theoretical expla-
nation for a number of experimental results in the spin glass
alloys, within the context of a cluster meon field theory [1-3],
For the most part these experiments have been interpreted by
others as suggesting that there is no sharp phase tronsition in
the spin glasses, We argue here that this is not necessarily the
case and show that they can be reconciled with the notion that
the alloy undergoes a sudden freezing in the spins at a single
temperature Tgs. We will discuss specific heat [4], neutron
scattering [5,6], resistivity [7,8] and finite field (reversible)
susceptibility and magnetization measurements [9-14]. See
[15, 18] for a more complete review of the experimental
results, Because a theory for the first two of these is discus-
sed in detail elsewhere {1-3], attention here will be focused
on the behavior of the resistivity and finite field measurements.

Our theoretical framework is based on a natural merger of
two central ideas in the spin glasses: the Edwards-Anderson
(EA) mean field theory [17] and the notion that clusters rather
than individual spins are the fundamental entity, The former
has been discussed in detail elsewhere [18-20] and needs no
review here.

Different cluster models of the spin glasses have been for-
mulated by a number of researchers. in 1971, Beck {10} first
pointed out that short range ferromagnetic order is present in
Cu-Mn and similar alloys, This observation was based on the
"superparamagnetism” evident from measurements of the field
and temperature dependence of the magnetization. In addition
to ferromagnetic clusters, he argued that one had to assume a
matrix of much smaller moments in which the spin directions
are frozen below some temperature Tgg. Due to the inter-
action of the giant moments and the frozen mairix, the spins
of the cluster gradually become frozen as the temperature is
decreased, Tholence and Tournier [12] based their arguments
for the existence of spin clusters on analogies with the Néel
theory of rock magnetism. The alloy is spontaneously divided
into independent regions (monodomains). The exchange inter-
actions within each region ere given by the RKKY form, At
T = 0 the resulting moment (due to imperfect compensation of
the spins) is frozen in the direction of its random anisotropy
axis. This model was used to correlate measurements of the
saturated magnetization @ _, the zero temperature saturated
remanent magnetization ©,(0) and the thermal variation of
Opse
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Binder [21] suggested that ferromagnetic clusters of spins
must be invoked (among other reasons) in order to understand
the magnitude of the remanent magnetization and the field
sensitivity of the AC (reversible) susceptibility measurements.,
He noted that a simple EA theory yielded disogreement with
experimental measurements of these quantities by at least an
order of magnitude. This could be corrected by rescaling the
spin size $ fo a larger value (presumably derived from large
rigid clusters). Murani [6] based his argument for the exis-
tence of clusters on his neutron scattering experiments. He

d
observed that the dﬁgﬂ had a maximum at a temperature which

depended on the momentum k and therefore suggested that this
reflected the freezing temperature of o cluster of characteristic
size 1/k. Since this temperature was k-dependent he argued
that the clusters must freeze along their random anisotropy
axes at different temperatures depending on their characteristic
size. Additional cluster models similar to those summarized
here have been discussed by Mydosh [15], Guy [13], Coles

et al, [22], and Kouvel [23].

" Independently of Binder [21], two of the present authors
[1] suggested a self~consistent cluster model based on the EA
theory. Unlike that discussed by Binder, the model treated
exactly the internal degrees of freedom of the cluster, thus
enabling us to discuss the temperature dependence of various
quontities. Briefly the model can be summarized as follows,
We begin with a phenomenological model Hamiltonian,
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_vghere Si denotes the spin at the site i in the \)th cluster and
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treated exactly. The inter-cluster exchange interactions J

- . - . v
treated in mean field theory, are distributed according to the
Gaussian formula

o . .
v Ji' is the intra-cluster exchange which is

’
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where J' is the net ferromagnetic intercluster exchange inter-
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action. The free energy is evaluated using thg replicg method
in f_e.arms_’of the variational pagameters Q=[{<5§>.K5 >] M=

[«S «S >] andr;: =[<S >1, where [] denotes a con-
v v e v e c

figuration average. This yields for Heisenberg spins

yielding a specific heat which is qualitatively in agreement
with experiment,

A second success of the model was a consistent interpreta-
tion [2] of Murani's neutron scattering experiments. We showed
elsewhere that these experiments are, in fact, consistent with

2 o the notion that the spin glasses undergo a sharp phase transition
F(q, M, m)=- NClkT [ J (QQ —M2) = vA rather than a continuous one as has been suggested [6]. We pre-
P lZ(kT)z Ay 2(kT) sented two arguments to support our claim, The first was o
simple data analysis. In this we demonstrated that the total
2 experimental neutron cross section, which consists of the two
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where the sums involving J' include only near neighbor pairs of
spins. Here J=2J, where z is the number of nearest neighbors
and N is the number of clusters.

In mean field theory, each cluster can be assumed to con-
tain the saume number of spins, which is equal to the average
value in the atloy. The magnetic susceptibility and specific
heat are readily evaluated, The former is most sensitive to the
random spin glass ordering between the clusters rather than to
the short range order within the cluster. Therefore it does not
differ significantly from what is found in the single spin EA
case, and is in reasonable agreement with experiment. The
latter primarily reflects the intracluster short range order.
Although it has a weak contribution from the spin glass freezing,
most of this is washed out by the Schottky anomaly arising from
the spin cluster. This leads to a broad maximum in C_ at a
temperature somewhat higher than the freezing temperature.
This cluster model thus "corrects” a basic defect of the EA
picture by building in short range order at T and thereby
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can be decomposed into these separate contributions, The sec-
ond term, called the "Bragg" term by analogy with ferromag-
netism is basically a Fourier transform of the order parameter,

It thus vanishes for T2 T Its zero temperature contribution
is given by the total cross section at T = 0, since Tx (k, T)
vanishes there. We have a reasonably good idea of the shape
of the Bragg curve from the expected T dependence of the

order parameter, The corresponding curves are shown in the
insets of Figs, la, 1b for two different AuFe alloys [6] con-
taining 13 and 15% Fe, The net result of subtracting the Bragg
term (dashed) from the total cross section yields TX(k, T) which
is plotted in the main part of both figures for a range of k values.
As can be seen these curves all have their maxima at a single
temperature Tg( (taken to be 40 K and 43 K in the 13 and 15%
sample, respectively), The data analysis thus suggests the exis-
tence of a sharp phase transition rather than a continuous one.
What we have shown is that this transition is reflected in x(k,T),
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subtracting an estimate of the "Bragg" term (dashed) from the measured (Ref. 6) total cross section I(k, T)
(plotted in the inset). The value of q from fop to bottom are (a) 6.0, 6.9, 8.6 and 13.8 x 10-3 A-1 for
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Fig. 1 The wave vector dependent susceptibility Tx (k,
13% Fe and (b) 5.2, 6.9 and 8,6 for 15% Fe.
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but not in the total neutron cross section, The behavior is in
contrast to what is observed in a pure ferromagnet for small k,
where the two are essentially equivalent,

We have performed a simple RPA calculation of do

o’
Tx(k, T) and Ig(k, T) using the cluster mean field theory.

The result of this calculation [2] is that 3_31 has a k-depen-

dent peak for T< TSG' whenever (i) the inter-cluster ferro-

magnetic exchange constant J' # 0, corresponding to the

shift of the Gaussian and (i) %?A #0. An illustrative

example of these effects is in Ref. 2,

There are two different indications that clusters of spins
are important in these neutron experiments, The first comes
from the observation that the Bragg curves, derived from
experiment at T = O are strongly k dependent, Thus the order
parameter [<5;> . <5:>] is not simply proportional to §;:
as in the EA theory. Secondly, in a Heisenberg EA model,
M will be a constant in temperature. Hence in this theory
which ignores clusters dM/dT = 0 and the maximum in the
cross section occurs at T = Tgc in contradiction to experi-
ment [6],

The characteristic behavior of the resistivity p in a spin
glass is shown in Fig. 2a. The data is taken from Ref, 7.
As can be seen there is a broad maximum in p at o tempera-
ture above T and generally somewhat larger  than that
of the specific heat maximum. The qualitative shape of
these curves has been explained previously by Beal-Monod
[24] and Larsen [25]. The former author considered the per-
turbative contributions to the resistivity (up to third order
in the s-d exchange constant J*¢) from pairs of spins; the
spin glass transition was not explicitly considered. The
latter used a noise model, which presupposes the existence
of internal magnetic fields above Tsg, and summed diagrams
in Jsd within the parquet approximation. We point out here
that only by infroducing spin clusters (with internal degrees
of freedom), can the data be reconciled with a theory of a
mean field-like phase transition at Tg. There are basi-
cally three temperature regions to distinguish: 0sT sTsg
TSGS T=<Tg, and Tp<T, where TD is the degeneracy tem-
perature of the spin cluster. This temperature is of order
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Fig. 2 (o) Over-all temperature variation of &p (wQem) for
AuFe alloys with concentrations of 1-, 2-, 5-, and
8-at, % Fe. Note the change in scale between 1-
and 2-at, % alloys, and the 5- and 8-at. % alloys.
Data from Ref, 7.
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~ 2-3 J° where JO is the characteristic intra-cluster exchange
temperature. We consider here only the second po and third
P3 order contributions in JSd, Our calculation of pp fol-
lows that of Levin-Mills [26]. We consider ferromagnetic
clusters only, For T =Tgc, the temperature dependence of
the resistivity is dominated by p,, since the giant spin Kondo
term pq is effectively quenched in an internal magnetic field.
Because the cluster moment is relatively constant over this
temperature region, to a good approximation p, and p3 can
be calculated by considering the magneto-resistivity of a
giant spin. The former increases monotonically with T, In
the intermediate temperature region po continues fo rise,
This follows because the increasingly available inelastic pro-
cesses dominate the effect of the decrease in the cluster
moment. To some extent this can be understood as arising
from interference effects due to the spatial extent of the
cluster [26]. Above Tp, po is a constant., ForTp =T, P3

is simply the single spin Kondo term which decreases with
temperature logarithmically. The overall effect of p, +
pgis, then, o negative temperature coefficient of the
resistivity, as observed in this temperature interval. For
Tgg £ T <Tp the third order term p3 increases with tem-
perature, This is shown explicitly in Ref. 24 . 1t can be
understood as arising from the fact that the low T giant

spin Kondo term is strongly suppressed by interference
effects [26] (due to the spatial extent of the cluster).

Hence between Tg and Tp, p3 must smoathly extrapolate
from a small 4nT term to a considerably larger one and
increases monotonically. The results of a semi-quantitative
calculation of p are shown in Fig. 2b for a 10 spin cluster
[27]. In the intermediate temperature region we have per-
formed a smooth extrapolation, following the 2 spin results
of Beal-Monod [24]. This places the maximum in p ot or
below Ty. Note that this explains why this temperature

is somewhat higher than the maximum in the specific heat
which must necessarily occur well below Tp. If clusters are
ignored, as in the simple EA picture, then it follows that

p must decrease for T = Tgq (in contradiction to experi-
ment), since Py is constant there and p3 decreases mono-
tonically, Hence the behavior of the resistivity provides
further evidence for spin clusters.

10 .

Py + P3 (arbitrary units)

|
0 5 10

T/Tsc

(b) Resistivity p = p2 * p3 versus temperature for 10
spins in a cluster [27]. We have calculated p for
T<Tggand T > TD and the results are shown as
solid line, The intermediate region where we

extrapolate between the two known limits is
dashed,
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As a final application of our cluster mean field theory
we compute the field dependence of x, C, and the mag-
netization m for a range of temperatures. As was argued
by Binder [21], the strong field sensitivity of X and m
suggests that spin clusters are important. 1t should be
pointed out that there are both reversible and irreversible
contributions to the magnetization and susceptibility
below Tg;. Tholence and Toumier [12)showed that AC and
DC measurements of X were not equivalent, The former
corresponds to the reversible contribution and exhibits a sharp
cusp at Tg which disappears in @ DC measurement. In mag-
netization studies [12, 13, 16], it was found that the history
of the sample is very important and that results differ depending
upon whether it was field cooled or not. It appears that all
reversible magnetization and susceptibility measurements can
be qualitatively explained by the EA mean field theory, pro-
vided one incorporates giant spins (clusters), Consequently,
in what follows, we will refer only to reversible experi-
ments and not field cooled ones [28], No complete
first principles theory has yet emerged for treating the irre-
versible contributions. However phenomenological approaches
{12, 13l rely heavily on the notion that clusters of spins
are important,

We have calculated the heat capacity C | and magnetiza-
tion m in a finite magnetic field. This field enters the self-
consistent equations for m, Q and M. We have numerically
solved the three coupled equations for m, M and Q for a
cluster of 10 spins with ferromagnetic exchange constant
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ig. 3 Heat capacity C versus temperature for fixed
values of the magnetic field H in units of g /
kTg. The parameters are as defined in the text,

N =10, J=.01J°%and J' = .008 Jo.

1 2
A

Fig. 4 Magnetization in a magnetic field H for 10 spins in a cluster. (a) m/ng-B H versus T for several values of

the field H in units of gp.BH/kTSG. The curve denoted by 0 corresponds to X = %EH— ! . {b) m versus H

H=0

for fixed temperature T and (c) m versus T for several values of H in units of gp.BH/kTSG.
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J = .0l J° which is basically the width of the Gaussian

{Eq. (2)) distribution for P(J v). We have also included

a ferromagnetic inter~cluster exchange J' = .008 J°, to
yield a relatively sharply peaked X in zero field ot Tgg =
.236 J°, In order to handle numerically large spin clusters
we consider Ising spins. Qur results for X and m are only
slightly affected by this simplification. However the specific
heat Schottky anomaly is somewhat narrower than in the
Heisenberg case.

The results for C . are shown for three values of the
magnetic field (in units of gupH/kTgg) in Fig. 3. As
seen the effect of the field is to shift the maximum to
higher temperatures; but with very little qualitative change
in the shape of the curves. For this choice of parameters the
inter-cluster contribution to C,; (which yields a cusp at Tsa)
is completely washed out by the Schottky anomaly. This
need not always be the case, as shown in Refs, 1, 3.

By contrast the effects of the field on m and X are more
pronounced. In Fig. 4a, we plot m/H versus temperature
for increasing values of field gy H/kBTS and for the same
parameters as discussed above. The top curve denoted by 0
corresponds to X = 3m /3 H| H=0° Note that relatively

small fields both round and shift the maximum to lower
temperatures, Fischer [18] showed that in the single spin
EA model the cusp in X becomes rounded when gp, H/
kgTsg ~ 1. Experimentally [9] the field dependence is

about 20 to 50 times stronger than this, If the single spin

EA model is replaced by a ferromagnetic cluster model
containing 10 spins on average and J' # 0, the field
sensitivity is increased by about o factor of 10-20, This leads
to reasonable agreement with the reversible magnetization
experiments, for AuFe alloys containing a few percent iron.
In Fig. 4b, we plot m versus H for fixed T and in Fig. 4c m
versus T for fixed H. From Fig. 4c, we find that for values of
H below saturation, m has @ maximum at a T approximately
5~.7TsG. This is also true for the single~spin EA model as
m has a maximum in this temperature range for finite values
of H, This is qualitatively similar to Beck's results on zero
field cooled CuMn alloys. The experimental counterparts to
Fig. 4a and c are given in Refs, [ 10, 16]. We find that our
results compare qualitatively well with the zero-field cooled
magnetization results,
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